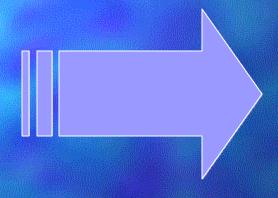
What Facility Managers Need to do to Avoid Peak Demand Cost

ENERGY 2001

June 5, 2001


American Gas Cooling Center Tony Occhionero

Building CHP System & Distributed Energy Resource Technologies or "Disruptive" Technologies

Disruptive Technologies

- **PCs**
- Internet
- Minimills
- **Cell Phones**
- Wireless
- Biotech

Attributes

- Challenges existing infrastructure
- New market entrants
- Ultimate value hard to establish

Gas Cooling and DG could be a disruptive technology

Efficiency Benefits of the CHP Approach

28% Natural Resource Savings

TODAY'S BUILDINGS

SMODUMS & MINDOWS 85

% ENERGY USE vs STATUS QUO

Efficiency & Demand

Thermal Efficiency = 29%

Electric Chiller = .55 kW/Ton

Machine Room = .16 kW/Ton

Traditional Electric System
.71 kW/Ton

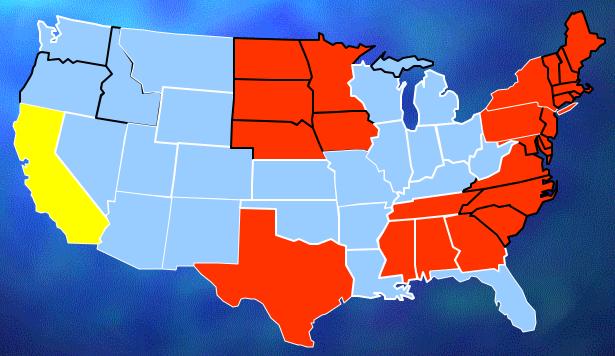
Peak Demand = 231 kW

Thermal Efficiency = 70-80%

Microturbine/Absorption System
9.9 MBH/Ton

Peak Demand = 0 kW

Building CHP System Benefits


- Peak Shave kW's
- Energy Manageability
- Building System Flexibility
- Improved comfort and Indoor air quality
- Increase System Efficiency
- Lowest potential life cycle costs

Reliability Concerns

"Local power outages doubled between 1996 and 1998 due to strong U.S. demand for electricity and deregulation" -- Wall Street Journal, March 16, 2000

Areas with Capacity Margins < 10 percent</p>

Source: National Energy Reliability Council, 1999 2007 Projections

Impacts

- Brownouts, rolling blackouts, increase electric & gas costs to customers
- Call for more power plants to meet peak demand
- Build 50 new plants to generate 40,000 MW
- Provide incentives to install new more efficient equipment and systems that reduce peak demand
- Encourage gas cooling, distributed generation (DG) and waste heat recovery to reduce peak demand

Building CHP Technology

Cooling Heating P

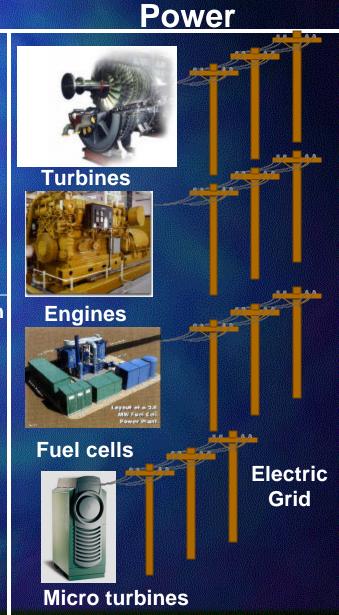
Gas Engine chillers

Electric chillers

Gas Absorption chillers

Heating

Water heating



Humidification

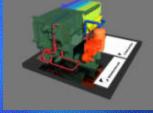
Gas Turbine

Solid Oxide Fuel Cell

600°F

360°F

180**°F**


900°F

Micro-turbine

Commercial Phosphoric Acid Fuel Cell

Triple-Effect Absorption Chiller

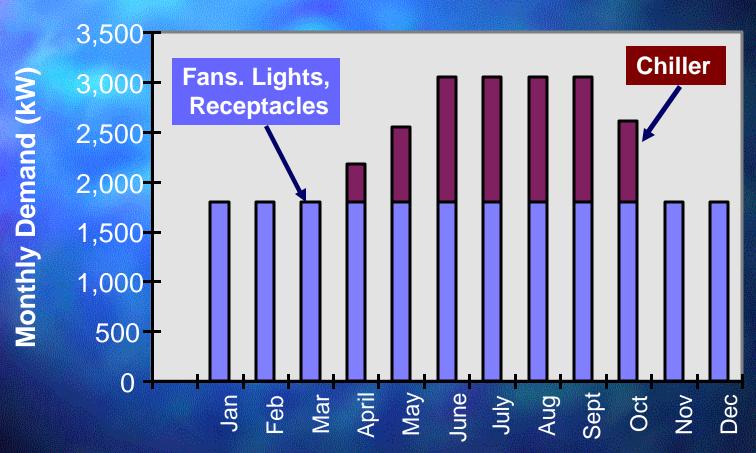
Double-Effect Absorption Air-Cooled Chiller

Desiccant Technology

I.C. Engine

Residential PEM Fuel Cell

Single-Effect Absorption Chiller

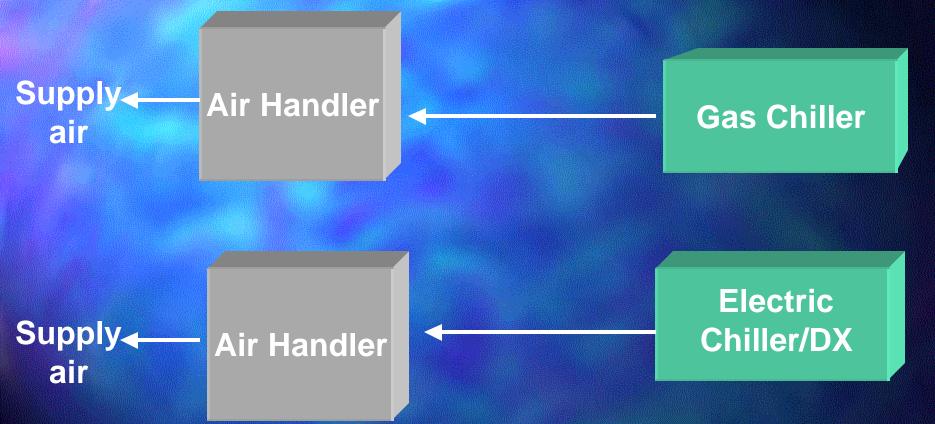


Building CHP System Customer Benefits

- Peak Shave kW's
- Energy Manageability
- Building System Flexibility
- Improved comfort and Indoor air quality
- Increase HVAC System Efficiency
- Lowest potential life cycle costs

Demand Profile

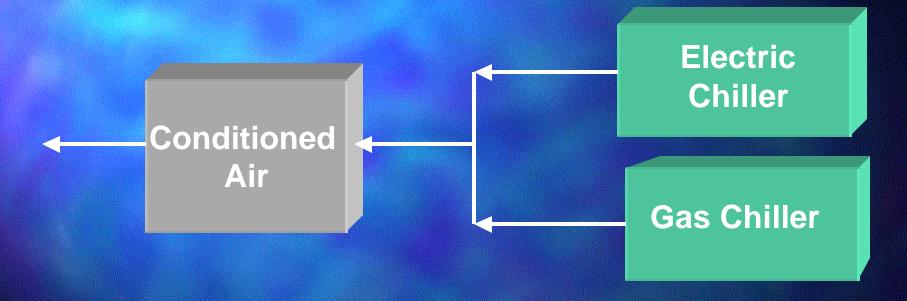
Electric vs. Natural Gas Cooling Equipment **KW Demand - Electric System Peak Periods kW Savings** No. of **Natural Gas Electric Per Ton With** Tons **Equipment NG Eqpmt.** Source **Equipment** (kW per ton of cooling) range 1 0.280 1.350 1.070 а 1.200 25 0.150 1.050 а 0.026 50 1.000 0.974 С 0.025 100 0.900 0.875 С 0.014 150 0.690 0.676 b 300 0.011 0.520 0.509 b 0.029 400 0.520 0.491 d 0.008 500 0.024 0.520 0.512 b,d 0.005 0.480 750 0.023 0.475 b,d 1000 0.004 0.480 0.476 b 1375 0.009 0.480 0.471 d **Notes** Sources includes circulating water pump **Robur Corporation** a Tecogen Corporation equivalent 14 SEER unit b equivalent 10 SEER unit Yazaki Energy Services С engine-driven chiller d York International absorption chiller


Gas Cooling / Integrated Systems Demand (kW) and Energy (kWh) Savings

# Tons	Electric Cooling Demand (kW)	Electric Cooling Energy (kWh*	Integrated Systems with Gas Cooling - Electric Demand Savings (kW)	Integrated Systems with Gas Cooling - Electric Energy Savings (kWh*
3	4	5,670		
25	30	42,000		
50	50	70,000	25.65	35.910
100	90	126,600	46.25	64,750
400	208	291,000	109.8	153,720
1000	480	672,000	242.0	338,800
1375	660	924,000	342.0	478,800

Hybrid HVAC System

Gas and Electric Chillers


Building BCHP System Customer Benefits

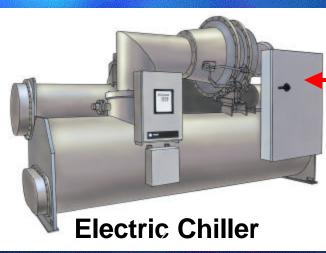
- Peak Shave kW's
- Energy Manageability
- Building System Flexibility
- Improved comfort and Indoor air quality
- Increase HVAC System Efficiency
- Lowest potential life cycle costs

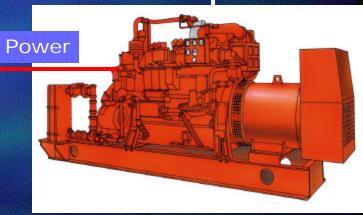
Hybrid HVAC System

Gas and Electric Chillers

Building CHP System Plant

Gas Chiller, Power Generation and Electric Chiller




Absorption Gas Chiller

Waste Heat Recovery

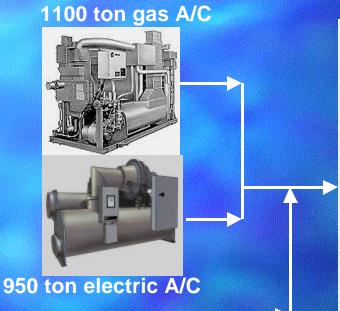
Chilled

Water

Gas Generator

Building CHP System Customer Benefits

- Peak Shave kW's
- Energy Manageability
- Building System Flexibility
- Improved comfort and Indoor air quality
- Increase HVAC System Efficiency
- Lowest potential life cycle costs



FERC Building, Washington DC: Cooling & Heating

Plate frame heat exchanger

Space Cooling:

Electric & Gas A/C

Economizer

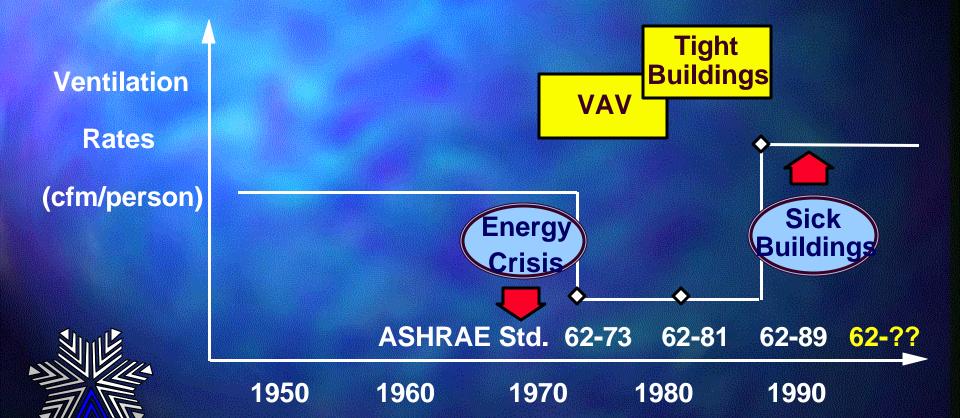
Space Heating:

Gas Absorber

Electric Strip Heating

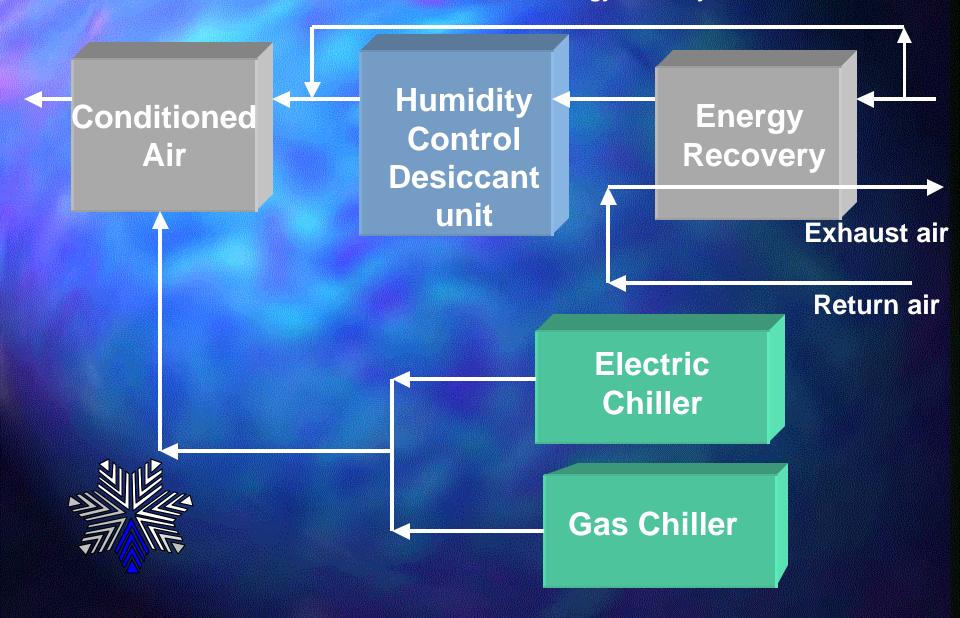
Results:

Reduced Peak electrical Demand Increased Energy Efficiency Increased Energy Savings Greater Operating Flexibility Managed Energy Costs



Building CHP System Customer Benefits

- Peak Shave kW's
- Energy Manageability
- Building System Flexibility
- Improved comfort and Indoor air quality
- Increase HVAC System Efficiency
- Lowest potential life cycle costs


IAQ CONCERNS LEAD TO INCREASED VENTILATION

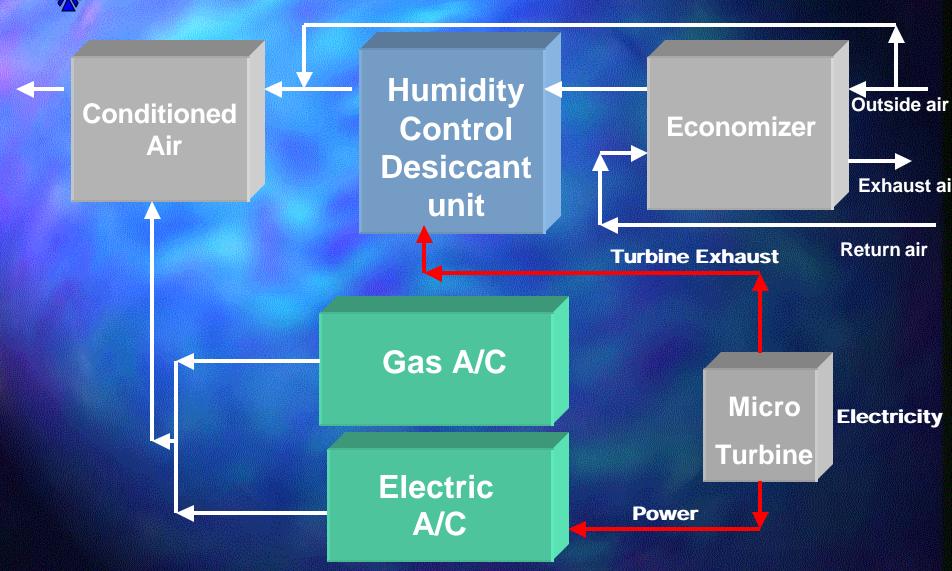
BCHP HVAC System

Gas and electric chillers with desiccant unit and energy recovery

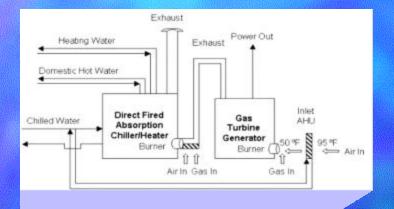
Outside air

Humidity Control Advantage

- 20% reduction in Cooling or Refrigeration
- Reduce Peak Demand
- Desiccants Use Waste Heat for Regeneration
- System Integration


Building CHP System Customer Benefits

- Peak Shave kW's
- Energy Manageability
- Building System Flexibility
- Improved comfort and Indoor air quality
- Increase System Efficiency
- Lowest potential life cycle costs


Building CHP System

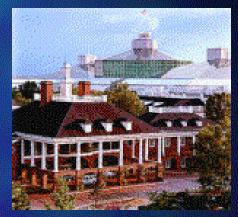
DOE / UMD BCHP System Test Center

Building CHP System Benefits

- Peak Shave kW's
- Energy Manageability
- Building System Flexibility
- Improved comfort and Indoor air quality
- Increase HVAC System Efficiency
- Lowest potential life cycle costs

BCHP System Installations

Corporate campuses with Integrated Cooling Plants


Annual HVAC operational savings total \$4.9 million from gas combustion turbine with 1,360 tons of gas air conditioning

Hospital, Philadelphia, PA

Run emergency gas generators as peak shavers - saving \$250,000 on tariff and an additional \$180,000 for improved load factorpayback 3 months

Opryland Hotel, Nashville

Gas combustion turbine and 1000 tons of gas air conditioning provides substantial savings and a 5 year payback.

Examples of BCHP

- Integrate desiccant cooling systems
- Integrate chiller and desiccant cooling systems
- Integrate electric chiller and absorption cooling systems
- Integrate electric chiller and gas engine-driven cooling systems
 - Integrate gas engine-driven and desiccant cooling systems
 - Integrate liquid desiccant cooling and cogeneration systems
 - Integrate desiccant cold air distribution cooling systems
- Integrated absorption cooling and cogeneration systems
- Integrate solar-assisted centrifugal chiller, and desiccant cooling and cogeneration systems
- Integrate Distributed Power and HVAC Systems

Actions

- Use BCHP, Integrated or Hybrid Systems for New & Replacement Projects
- Encourage Adoption of Building CHP and Integrated System Designs for Demand Side Management
- Peak Shave with Building CHP Systems